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Executive summary 
 

Feed bunk management is the process of determining feed allocation for pens of feedlot cattle for a 
24-hour feeding cycle. Objectives of bunk management include consistently maximising feed intake, 
whilst minimising feed wastage and digestive disorders (bloat and acidosis). Bunk calling is a critically 
important job, and the human callers’ actions directly determine feed intake and carcase weight gain 
of pens of feedlot cattle. 

It is now feasible to automate feed bunk management with advancements in mapping, sensors, and 
robotics technologies. A prototype was designed and validated to quantity feed remaining in bunks at 
Mort & Co’s Grassdale Feedlot, Queensland, Australia. The vehicle-mounted prototype’s primary 
sensing element is based on light detection and ranging (lidar) technology. The on-board positioning 
solutions determine where the vehicle is in a world coordinate system. An on-board attitude solution 
accounts for any vehicle roll and rock and any other dynamic events to improve the quality of the data 
collected. The scanner has an on-board computer that measures and integrates the data as it travels 
along the bunk, publishing a volume of feed remaining at the end of each bunk. Given density of the 
different rations, feed remaining in the bunks is determined. Utilising lidar technology the bunk 
scanner can work in day and night conditions. 

Two experiments evaluated the precision and accuracy of the prototype to quantify feed remaining in 
bunks. Experiment 1 utilised a 33 m length of preformed concrete bunk placed on a compacted gravel 
pad (test bunk), adjacent to the operational feedlot. Ten random quantities (0 to 905 kg) of a steam-
flaked wheat-based finisher diet were weighed into the bunk during day and night conditions. Both 
bunk callers and engineers operating the bunk scanner were blinded to this process. For each graded 
level of feed, bunk callers (two humans for day; one human for night) independently estimated feed 
remaining from a utility vehicle. The prototype bunk scanner mounted to a separate vehicle then 
conducted three scans of the bunk for each graded level of feed to determine feed remaining.  

Under both day and night conditions the prototype system accurately and precisely predicted feed 
remaining in bunks, outperforming human callers in both criteria. The prototype had small amounts of 
mean bias (P-values ≤ 0.01); over (-8.3 kg) and underestimating (5.9 kg) feed remaining for day and 
night measurements, respectively. The prototype had no linear bias (P-value = 0.906) during day 
conditions i.e. bias was consistent over the full range of feed remaining in the bunk. For night 
conditions, significant linear bias was reported (P-value = 0.008), however the magnitude was small 
(10.4 to -3.4 kg). Precision of the prototype was excellent under both day and night conditions (r2 = 
0.99). Mean absolute error for the prototype system was 11.6 and 9.1 kg for day and night, 
respectively.  

Human performance was variable and less accurate. Larger amounts of significant mean bias (P-values 
≤ 0.01) were reported with bunk callers over (-47.5 kg) and underestimating (161.0 kg) feed remaining 
for day and night measurements, respectively. Significant linear biases (P-values ≤ 0.01) were 
reported, with the magnitude being much larger than the prototype (-1.9 to -148.0 kg for day bunk 
callers; -71.7 to 514.3 kg for night bunk callers). Mean absolute error for human callers was 49.5 and 
162.0 kg for day and night, respectively. Precision of human callers was however sufficient (r2 = 0.98 
and 0.96 for day and night, respectively).  

Experiment 2 evaluated the performance of the newly validated prototype system in an operational 
feedlot over two weeks in daylight conditions. The designated bunk caller for the day, and the proto-
type determined feed remaining in the early morning (0600 hours) prior to feeding. Feed was then 
vacuumed from each bunk and weighed back. A total of 55 bunks were measured with feed weights 
from 0 to 330 kg. The baseline geometry for all assessed bunks was unknown prior to estimation of 
feed remaining. Accordingly, a second pass of the prototype scanner occurred immediately after 
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weighing and vacuuming to determine profiles for empty bunks. Quantity of feed remaining was 
determined from post-processing of lidar point-cloud data.  

The prototype outperformed humans for precision and accuracy of estimation of feed remaining 
under commercial operating conditions. The prototype had small amounts of mean bias (P-value ≤ 
0.01) underestimating feed delivered on average by 11.3 kg. Linear bias was not significant (P-value > 
0.05) however a trend for linear bias of a small magnitude was observed (8.7 to 20.2 kg). Supporting 
this, linear or systematic bias accounted for only 3.14% of the decomposition of the mean square 
prediction error. Precision was again excellent (r2 = 0.98). Mean absolute error for the prototype was 
12.2 kg. It is believed than the mean bias detected in this experiment is possibly the result of changes 
in density from when the feed is delivered, to when the bunks are called 24 hours later. Settling and 
compaction could be attributable to the feeds duration in the bunk, as well as the livestock interaction 
with feed. Simple offsets to accounts for this mean bias will likely improve the accuracy of the bunk 
scanner and require further investigation.  

In contrast, human callers had increased mean bias (P-value ≤ 0.01) underestimating feed remaining 
by 34.6 kg. Significant linear bias (P-value ≤ 0.01) was observed (12.6 to 115.8 kg), with bias increasing 
with quantity of feed remaining in the bunk. This makes biological sense given the challenges of 
estimating large quantities of feed in bunks. Precision was satisfactory for human bunk callers (r2 = 
0.78) but not superior to the prototype under commercial operating conditions. Mean absolute error 
reported for humans was 37 kg; approximately 2.8 times that of the prototype.  

Based on the results of project, the prototype bunk scanner demonstrates exciting promise to 
determine feed remaining in bunks, with performance superior to human operators. Further extended 
campaigns of measurement are required across diverse feedlot sites to determine the robustness of 
the prototype versus human observation. We believe this to be a world-first application of the 
aforementioned technology that paves the way to objective automation of bunk management and 
represents a high-value outcome for the Australian feedlot industry.  
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1 Introduction 

This final report describes the results of two experiments to evaluate a prototype bunk scanner to 

estimate feed remaining in bunks of feedlot cattle. 

1.1 Automation of bunk management  

Feed bunk management is the process of determining feed allocation for pens of feedlot cattle for a 

24-hour feeding cycle. Objectives of bunk management include consistently maximising feed intake, 

whilst minimising feed wastage and digestive disorders (bloat and acidosis). Bunk calling is a critically 

important job, and the human callers’ actions directly determine feed intake and carcase weight gain 

of pens of feedlot cattle. 

The process of bunk management is currently ‘subjective’ and is often described as more of an art, 

than a science. Part of the reason for this is estimation of feed remaining in bunks is made by 

humans, who are unique in their cognitive functions. No formally published literature exists 

evaluating the precision and accuracy of humans to estimate feed remaining, partly due to the 

labour-intensive process of weighing back quantities of feed from bunks. Experienced managers in 

commercial feedlots report variation between bunk callers in estimation of feed remaining, which is 

influenced by previous training, skill level, and focus on any given work day. The value proposition of 

decreasing variation between bunk callers remains to be determined.  

To pave the way for automation of bunk management, ‘objective measurement’ of feed remaining is 

the first challenge to overcome. 

1.2 Prototype design – bunk scanner  

It is now feasible to automate feed bunk management with advancements in mapping, sensors, and 

robotics technologies. A prototype was designed and validated to quantity feed remaining in bunks 

at Mort & Co’s Grassdale Feedlot, Queensland, Australia. The vehicle-mounted prototype’s primary 

sensing element is based on light detection and ranging (lidar) technology. The on-board positioning 

solutions determine where the vehicle is in a world coordinate system. An on-board attitude 

solution accounts for any vehicle roll and rock and any other dynamic events to improve the quality 

of the data collected. The scanner has an on-board computer that measures and integrates the data 

as it travels along the bunk, publishing a volume of feed remaining at the end of each bunk. Given 

density of the different rations, feed remaining in the bunks is determined.  Utilising lidar technology 

the bunk scanner can work in day and night conditions. 

 

2 Project objectives 

1. Develop a prototype vehicle mounted sensor system to estimate feed remaining in 

bunks of feedlot cattle.  

2. Determine the precision and accuracy of the prototype to estimate feed remaining for 

finisher diets.  

3. Determine the precision and accuracy of human bunk callers to estimate feed remaining 

for finisher diets. 
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3 Methodology 

The project was conducted at Mort & Co Grassdale feedlot, near Dalby, Queensland, Australia. 

Grassdale is a modern feedlot facility and is currently expanding to 70,000 standard cattle units. Two 

experiments evaluated the precision and accuracy of the vehicle mounted prototype to quantify 

feed remaining in bunks. 

3.1 Experiment 1 – test bunk 

Experiment 1 utilised a 33 metre length of preformed concrete bunk placed on a compacted gravel 

pad (test bunk), adjacent to the operational feedlot (See Figure 1). Ten random quantities (between 

0 and 905 kg) of a steam-flaked wheat-based finisher diet were delivered into the bunk during day 

and night conditions. Masses up to 110 kilograms were hand weighed on a platform scale (CAS BW-

L60, Brisbane, QLD; ±0.1 kg readability). Weights more than this were delivered by a paddle mixer 

(Rotomix 920-18; Dodge City, KS, USA) and its scale-head (Digistar EZ indicator; Fort Atkinson, WI, 

USA; ±5 kg readability). Both platform and feed truck scale were calibrated and check-weighed prior 

to the commencement of the experiment. An independent facilitator generated these amounts, to 

blind bunk callers and project engineers from the amounts delivered and supervised their delivery by 

other independent staff.  

For each graded level of feed, bunk callers (two humans for day, ‘A’ & ‘B’; one human for night, ‘C’) 

were asked to estimate feed remaining from a light utility vehicle (Landcruiser, Toyota, Japan) and 

was blinded to the other bunk callers’ estimations of feed remaining. The prototype bunk scanner 

attached to the tray of a separate light utility vehicle (Hilux, Toyota, Japan) then conducted three 

scans of the bunk for each graded level of feed to determine the volume remaining. Travel speeds 

for both vehicles were approximately 10 km/hr. Weather conditions for the experiment were dry 

during January 2018.  

 

 

Figure 1. The typical human caller activity for estimating feed remaining in the test bunk. 

 

Feed density for this experiment was determined from a quotient calculated from the known feed 

mass delivered for the maximum observed feed quantity divided by the predicted volume, averaged 

over three passes. The quotient was multiplied by scanned volume to determine feed remaining.  
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3.2 Experiment 2 – operational feedlot environment  

Experiment 2 evaluated the performance of the newly validated prototype system in an operational 

feedlot environment. The study site was 0.7 km by 1.59 km, and road surfaces in feed alleys were 

bitumen. As a preliminary activity, the start and end positions of all pens was georeferenced, i.e. 

located in global coordinates based on GNSS measurements from the rover, to enable automatic 

localisation within the feedlot during this experiment. Three bunk callers were utilized for 

Experiment 2 over the ten days of measurement (‘A’ for two days, ‘B’ for three days, and ‘D’ for five 

days). Bunk callers utilised the Toyota Landcruiser utility previously described in Experiment 1, and 

drove at commercial operating speeds between 10 and 25 km/hr. Weather conditions were dry 

during Experiment 2 in late January 2018. 

Only pens delivered finisher diet during day light hours (steam-flaked wheat-based) were utilised for 

this experiment. Over the experiment’s two-week duration, five observations per day were made in 

week one, and six per day in the second week; a total of 55 observations from slick bunks (0 kg)  to 

330 kg remaining. Feed remaining quantities were scaled based on pen head-counts, with a view of 

completing a representative and evenly distributed dataset from 0 to greater than 1 kg/head 

remaining in the feed bunk. Measurements were taken from 34 unique feed bunks, from pens in the 

1st, 8th, 9th, 10th, 11th, and 12th rows of the feedlot. Bunks ranged in length from 21.7 to 88.0 m with an 

average length of 52.3 m and a standard deviation 21.6 m.  

The designated bunk caller for the day and the proto-type bunk scanner determined feed remaining 

independently in the early morning (starting at 0600 hrs) prior to feeding. The utility with the bunk 

scanner was operated at approximately 10 km/hr. Feed was then vacuumed from each bunk 

(Greystone Maxi Vac, Bells Creek, Q, Aus). The collected feed remaining masses were dumped onto 

segregated tarpaulins in a protected location in the feedlot away from normal operations and 

weighed on the platform scale previously described (See Figure 2). 

 

 

Figure 2. Paddock vacuum contents being transferred to tarpaulins for later weigh-back and 

recording as observed feed remaining values. 
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The baseline geometry for all assessed bunks was unknown prior to estimation of feed remaining. 

Accordingly, a second pass of the prototype scanner occurred immediately after weighing and 

vacuuming to determine profiles for empty bunks. Volume of feed remaining was determined from 

post-processing of lidar point-cloud data.  

The density of the delivered ration was also required daily to convert the prototype system’s 

predicted feed remaining volumes to masses. The prototype bunk scanner measured delivered 

volume immediately after feed delivery (starting at 0700 hours). A feedlot staff member kept cattle 

away from the feed bunk so an accurate measurement of delivered volume could be determined. 

These predicted volume measurements and feed trucks’ scale outputs were used to calculate the 

average daily density of the delivered ration, which in turn was applied to the day’s volume 

predictions.  

3.3 Statistical analyses  

For Experiments 1 and 2, several statistical analyses were calculated to objectively assess the 

performances of the prototype system and human bunk callers.  

Observed feed remaining was regressed on predicted feed remaining for both the prototype system 

and human bunk callers. The coefficient of determination (r2) was calculated on the line of 

regression as a measure of the strength of the relationship between observed and predicted feed 

remaining.  

Evaluation of the model’s precision utilized several commonly used measures of deviance, including 

mean absolute error (MAE), mean square prediction error (MSPE), and root mean square error 

(RMSPE). Shah and Murphy (2006) defined MSPE as: Σ (Oi − Pi)2/n, where n = number of paired 

observed (O) and predicted (P) feed remaining values being compared. The MAE is defined as: (Σ|Oi 

− Pi|)/n.  

Furthermore, the MSPE was decomposed to assess sources of variation, viz, (1) variation in central 

tendency (mean bias), (2) variation resulting from regression (systematic bias or line bias), and (3) 

random variation. Variation resulting from mean bias was calculated by squaring the mean bias of 

the prediction, whereas variation resulting from systematic bias was calculated as the product of the 

variance of the predicted feed remaining and the square of the deviation from 1 of the slope of the 

regression of observed on predicted data. Random variation was calculated as the product of the 

variance of observed data and the deviation from 1 of the coefficient of determination of the 

regression of observed on predicted data. Shah and Murphy (2006) noted that mean bias is useful to 

test the robustness of the model, whereas line bias can be used to test inadequacy in model 

structure. Mean proportional bias has been calculated as the slope of the regression of the predicted 

data on observed data with an intercept of 0 (Shah and Murphy, 2006). Over the range of observed 

values, a value of mean proportional bias less than one (< 1) denotes underprediction, whereas a 

value more than one (> 1) denotes overprediction. 

In addition, mean and linear biases were calculated by regression of residuals (observed minus 

predicted feed remaining) on mean-centred predicted feed remaining to assess model accuracy (St-

Pierre, 2003). St-Pierre (2003) noted that by centring predicted feed remaining to the mean value, 

the intercept of the linear model is estimated at the mean value of the independent variable rather 

than a value of zero. 



B.FLT.0166 – Prototype development for sensor technologies to automate feedlot bunk management 

Page 9 of 14 

The intercept term at the mean value is a measure of the mean prediction bias, and a t-test on the 

estimate of the intercept has been used to determine the statistical significance of this bias. The 

slope of this mean-centred regression is an estimate of the linear prediction bias, and a t-test has 

been used again to test significance. When the linear prediction bias has been found to be significant 

(P ≤ 0.05), the magnitude of the bias within the range of predicted values was determined by 

calculating the bias at the minimum and maximum data points of the predicted values (St-Pierre, 

2003). 

 

4 Results and Discussion 

4.1 Experiment 1 – test bunk  

The coefficient of determination (r2) from regression of observed on predicted feed remaining for 

day and night experiments for humans and prototype system are detailed below in Table 1. 

Additionally, the mean and linear biases are reported from the regression of residuals on mean-

centred predicted feed remaining. 

 

Table 1. Evaluation statistics for estimation of feed remaining for humans and prototype system in 
Experiment 1 at the test bunk facility. 

Item 

Humans Prototype system 

Day Night Day Night 

Mean bias, kg -47.500 161.000 -8.329 5.907 

P-value < 0.001 < 0.001 0.001 0.002 

Linear bias -0.146 1.674 -0.001 -0.015 

P-value < 0.001 < 0.001 0.906 0.008 

r2, regression of observed on  
predicted feed remaining 

0.980 0.959 0.998 0.999 

RMSPE, kg 80.172 258.370 14.832 11.904 

MSPE, kg2 6,427.500 66,755.000 219.973 141.717 

MAE, kg 49.500 162.000 11.640 9.088 

Mean proportional bias 1.162 0.409 1.014 0.998 

Decomposition of MSPE     

Mean bias, % 35.10 38.83 31.54 24.62 

Systematic bias, % 37.88 55.12 0.04 17.05 

Random bias, % 27.02 6.05 68.42 58.33 

Bias at minimum predicted 
value, kg 

-1.918 -71.742 - 10.433 

Bias at maximum predicted 
value, kg 

-148.013 514.298 - -3.414 

 

Under both day and night conditions the prototype system accurately and precisely predicted feed 

remaining in bunks, outperforming human callers in both criteria. The proto-type had small amounts 

of mean bias (P-values ≤ 0.01); over (-8.3 kg) and underestimating (5.9 kg) feed remaining for day 

and night measurements, respectively.  The prototype had no linear bias (P-value = 0.906) during 
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day conditions i.e. bias was consistent over the full range of feed remaining in the bunk; it follows 

that minimum and maximum biases were not calculated. For night conditions, significant linear bias 

as reported (P-value = 0.008), however the magnitude of bias was small (10.4 and –3.4 kg at 

minimum and maximum predicted values, respectively). Precision of the prototype was excellent 

under both day and night conditions (r2 = 0.99). Mean absolute error for the prototype system was 

11.6 and 9.1 kg for day and night, respectively. The RMSPE was 14.8 kg during the day, and 11.9 kg 

at night. 

Human performance was variable and less accurate. Larger amounts of significant mean bias (P-

values ≤ 0.01) were reported with bunk callers over (-47.5 kg) and underestimating (161.0 kg) feed 

remaining for day and night measurements, respectively. Significant linear biases (P-values ≤ 0.01) 

were reported, with the magnitude being much larger than the prototype (-1.9 to -148.0 kg for day 

bunk callers; -71.7 to 514.3 kg for night bunk callers). Mean absolute error for human callers was 

49.5 and 162.0 kg for day and night, respectively. The RMSPE was 80.2 kg during the day, and 258.4 

kg during the night.  

Human measurements across day and night were inconsistent (mean proportional biases of 1.162 

and 0.409 respectively), albeit with reasonable levels of precision (r2 of 0.98 and 0.96). The 

nightwatchman in this experiment significantly underestimated quantities of feed remaining in 

bunks at quantities over 1 kg/hd remaining in the bunk. This demonstrates the diversity of skills and 

inconsistency amongst humans in a large commercial feedlot versus the consistent prototype 

system.  

4.2 Experiment 2 – operational feedlot environment 

The prototype outperformed humans for precision and accuracy of estimation of feed remaining 

under commercial operating conditions (See Table 2). The prototype had small amounts of mean bias 

(P-value ≤ 0.01) underestimating feed delivered on average by 11.3 kg. Linear bias was not significant 

(P-value > 0.05) however a trend for linear bias of a small magnitude was observed (8.7 to 20.2 kg). 

Supporting this, linear or systematic bias accounted for only 3.14% of the decomposition of the mean 

square prediction error.  Precision was again excellent (r2 = 0.98). Mean absolute error for the proto-

type was 12.2 kg. It is believed than the mean bias detected in this experiment is possibly the result of 

changes in density from when the feed is delivered, to when the bunks are called 24 hours later. 

Settling and compaction could be attributable to the feeds duration in the bunk, as well as the 

livestock interaction with feed. Simple offsets to accounts for this mean bias will likely improve the 

accuracy of the bunk scanner and require further investigation.  

In contrast, human callers had increased mean bias (P-value ≤ 0.01) underestimating feed remaining 

by 34.6 kg. Significant linear bias (P-value ≤ 0.01) was observed (12.6 to 115.8 kg), with bias increasing 

with quantity of feed remaining in the bunk. This makes biological sense given the challenges of 

estimating large quantities of feed in bunks. Precision was satisfactory for human bunk callers (r2 = 

0.78) but not superior to the prototype under commercial operating conditions. Mean absolute error 

reported for humans was 37 kg; approximately 2.8 times that of the prototype.  
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Table 2. Evaluation statistics for estimation of feed remaining for humans and prototype system in 

Experiment 2 in the commercial feedlot operating environment. 

Item Humans Prototype system1 

Mean bias, kg 34.636 11.297 

P-value < 0.001 < 0.001 

Linear bias 0.469 0.037 

P-value < 0.001 0.063 

r2,  regression of observed on 

predicted feed remaining 
0.784 0.982 

RMSPE, kg 55.71 15.89 

MSPE, kg2 3,103.14 252.45 

MAE, kg 36.97 12.22 

Mean proportional bias 0.55 0.90 

Decomposition of MSPE   

Mean bias, % 38.66% 50.55% 

Systematic bias, % 16.58% 3.14% 

Random bias, % 44.76% 46.30% 

Bias at minimum predicted value, kg 12.63 - 

Bias at maximum predicted value, kg 115.82 - 

1 Volume of feed remaining was determined from post-processing of lidar point-cloud data. 

 

The total experiment observed on predicted feed remaining for both humans and prototype system 

are represented graphically below in Figure 3. Visual inspections of Figure 3 reinforce the outcomes 

achieved through the objective statistical analyses. Specifically, and once again, the prototype’s 

predictions are significantly closer to the line of regression, hence significantly more precise; this is 

also demonstrated by the r2 value shown in the provided equations in the figures. The humans’ 

predictions are generally significant under-predictions, and the apparent inconsistencies of these 

calls is also demonstrated by a lesser r2 value. 

 

To further demonstrate the benefit of the statistical evaluation of mean and linear bias presented by 

St-Pierre (2003), plots for residuals on mean-centred predictions are provided in Figure 4. Visual 

inspection of the prototype system evaluation detailed in Figure 4 further indicate the high level of 

accuracy across all observed masses, albeit with a minor mean offset; in this case a consistent under 

prediction of approximately 11 kg across the experimental data. The humans plot in this figure 

visually demonstrates large numbers of under predictions (based on residuals) for most feed 

remaining masses, and it can be observed these have a significant linear bias as the feed remaining 

masses increase, as well as being largely influenced by random predictions. 
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a. Human bunk callers 

 

b. Prototype bunk scanner 

 

Figure 3. Observed on predicted feed remaining for (a) humans and (b) prototype system 
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a. Human bunk callers 

 

b. Prototype bunk scanner 

 

Figure 4: Residuals (observed minus predicted) on mean-centred predicted for (a) humans 

and (b) prototype system 
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5 Conclusions 

Against the results presented in this report, the prototype bunk calling system provided highly 

repeatable (precise) and accurate feed remaining determinations.  In contrast, the human callers 

provide significantly less accurate and precise feed remaining predictions across all the experiments, 

especially at higher masses. Their performances with lesser feed remaining masses are probably 

acceptable for normal operating requirements. 

A statistical methodology has been exercised with a view to assess feed remaining predictions 

provided by the prototype system and human callers. The methodology has provided very clear and 

objective support for the prototype system’s precision and accuracy. The feedlot experiment results 

also suggest the significance of feed density knowledge, and especially how it may change after-

delivery through a 24-hour cycle. It is believed that this is the major contributing factor for the 

feedlot experiment’s minor underpredictions, though the influence of this effect could be simply 

mitigated programmatically. Further extended campaigns of measurement are required across 

diverse feedlot sites to determine the robustness of the prototype versus human observation. 

 

6 Key messages 

The prototype bunk scanner demonstrates exciting promise to determine feed remaining in bunks, 

with performance superior to human operators. We believe this to be a world first application of the 

aforementioned technology that paves the way to objective automation of bunk management and 

represents a high-value outcome for the Australian feedlot industry. 

With MLA’s support, we have delivered a prototype that has demonstrated significant potential 

benefit to the red meat industry. We suggest that a commercially-viable product should be available 

in the near term based on the successful outcomes of this project. 
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